Upper Extremity Motion Capture System

Biomechatronic Learning Laboratory

Mission Statement

Design a biomechatronic device that monitors upper extremity motion via physiological and biophysical data to benefit biomedical research in the electrical engineering department at RIT.

Core Customer Needs

- Motion of arm in three degrees of freedom (DOF)
 - 1. Elbow angle
 - Shoulder angle in sagittal plane
 - 3. Shoulder rotation in transverse plane
- Measure EMG activity of four muscle groups in arm
- Measure angular position with time
- Wireless data transmission
- Real time display of data (user interface) with data

The Team

Alan Smith (EE) Jonathan Guerrette (ME) Daniel Chapman (CE) Adey Gebregiorgis (EÉ) Melissa Gilbert (ME) Pooja Nanda (EÉ)

Concept/Design Methods

Platform

- Supports brace to maintain mobility of system
- Allows for motion capture of subject in sitting or standing position

Surface Electromyography (sEMG)

- Measurement of electrical potential difference across a muscle fiber
- Surface electrodes are used to collect the data from biceps, triceps, deltoid and brachioradialis muscles

Brace

- Uniquely designed with aluminum to fit male and female 95th percentile
- Housing for potentiometers

Rotary Potentiometers

Shaft of the potentiometer rotates with one adjacent part of the brace while the body remains stationary

- Output voltage is recorded which corresponds linearly to an angle measurement
- Mfd. by P3 America Inc.

BioRadio®

- Bioinstrumentation device used to transmit EMG and motion data to computer
- Mfd. by CleveMed

Software

- Data capture system to display measurements in real time using C++ and Qt
- Data processing includes filters and conversion of potentiometer voltages to joint angles in degrees using linear regression model
- Supports animation which mirrors subject's upper limb motion

PCB for Power Conditioning

- Layout designed to verify constant 4 Volt supply to potentiometers throughout the use of voltage regulators from 9 Volt
- Creates a 2 Volt virtual ground used as reference for the BioRadio
- Includes one output for voltage monitoring

Testing

Mechanical

- Mobile
- Durable
- Adjustable for different Voltages provided to individuals
- Motion of right or left
- Lightweight brace
- Able to add weights to brace

 Proper voltages are verified on PCB

Electrical

the potentiometers are monitored

Software

- Program loads data correctly and runs with out
- Data is displayed in real
- Properly converts voltage measurements from potentiometer to angles
- User friendly GUI

Conclusion/Future Work

- Project was successfully completed meeting the majority of the customer's needs
- System will be used in the Biomechatronic Learning Lab
- Signal processing algorithms will be created from the collected data
- Algorithms will serve to control robotic arm
- This research will be applied to prosthetics and other assistive devices

Acknowledgements

- Professor of Electrical Engineering at RIT
- Chris Platt, College of Imaging Arts and Sciences at RIT
- Dr. Daniel Phillips with Kate Gleason College of Engineering at RIT
- Edward Hanzlik, Adjunct Professor at RIT
- Dr. Edward Brown, the team's faculty guide and Assistant Dave Hathaway, Rob Kraynik and Steve Kosciol with the Mechanical Engineering machine shop
 - This project is supported by a grant from the Semiconductor Industry Association and by the National Science Foundation CISE division under Award No. IIS-0705130 and Award No. IIS-0748418."

